Lung surfactant gelation induced by epithelial cells exposed to air pollution or oxidative stress.
نویسندگان
چکیده
Lung surfactant lowers surface tension and adjusts interfacial rheology to facilitate breathing. A novel instrument, the interfacial stress rheometer (ISR), uses an oscillating magnetic needle to measure the shear viscosity and elasticity of a surfactant monolayer at the air-water interface. The ISR reveals that calf lung surfactant, Infasurf, exhibits remarkable fluidity, even when exposed to air pollution residual oil fly ash (ROFA), hydrogen peroxide (H2O2), or conditioned media from resting A549 alveolar epithelial cells (AEC). However, when Infasurf is exposed to a subphase of the soluble fraction of ROFA- or H2O2-treated AEC conditioned media, there is a prominent increase in surfactant elasticity and viscosity, representing two-dimensional gelation. Surfactant gelation is decreased when ROFA-AEC are pretreated with inhibitors of cellular reactive oxygen species (ROS), or with a mitochondrial anion channel inhibitor, as well as when A549-rho0 cells that lack mitochondrial DNA and functional electron transport are investigated. These results implicate both mitochondrial and nonmitochondrial ROS generation in ROFA-AEC-induced surfactant gelation. A549 cells treated with H2O2 demonstrate a dose-dependent increase in lung surfactant gelation. The ISR is a unique and sensitive instrument to characterize surfactant gelation induced by oxidatively stressed AEC.
منابع مشابه
Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملParticle-epithelial interaction: effect of priming and bystander neutrophils on IL-8 release
Exposure to ambient air pollution particles causes greater health effects in individuals with pre-existing inflammatory lung diseases. To model inflammatory priming in vitro, HTB54 lung epithelial cells were pre-treated with tumor necrosis factor-α (TNF-α) and then exposed to a panel of environmental particles, including concentrated ambient particles (CAPs). TNF-α priming significantly enhance...
متن کاملImpact of environmental factors on lung defences
The lungs are one of the most important organs exposed to environmental agents. The lungs have the ability to protect themselves by both immunological and nonimmunological mechanisms. An individual’s susceptibility to the impact of environmental agents will determine their adverse effects. This article focuses on air pollution, in particular ozone (O3), nitrogen dioxide (NO2), particulate matte...
متن کاملPulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative d...
متن کاملRegulation of human lung epithelial cell numbers by diesel exhaust particles.
Particulate air pollution is associated with respiratory morbidity and has cytotoxic and pro-inflammatory effects. The effects of diesel exhaust particles (DEP) on proliferation and apoptosis of A549 lung epithelial cells were examined. When deprived of serum (serum starvation), epithelial cell numbers fell, but DEP (5-200 microg.mL-1) prevented this. Using flow cytometric analysis of propidium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2005